Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>x</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xii</td>
</tr>
<tr>
<td>About the editors</td>
<td>xiii</td>
</tr>
<tr>
<td>Contributors</td>
<td>xiv</td>
</tr>
<tr>
<td>Reviewers</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Naturopathic case taking</td>
<td>1</td>
</tr>
<tr>
<td>Greg Connolly</td>
<td></td>
</tr>
<tr>
<td>2 Naturopathic diagnostic techniques</td>
<td>19</td>
</tr>
<tr>
<td>Niikee Schoendorfer and Daniel Roytas</td>
<td></td>
</tr>
<tr>
<td>3 Wellness, lifestyle and preventive medicine</td>
<td>53</td>
</tr>
<tr>
<td>Erica Oberg</td>
<td></td>
</tr>
<tr>
<td>4 Irritable bowel syndrome</td>
<td>73</td>
</tr>
<tr>
<td>Jason Hawrelak</td>
<td></td>
</tr>
<tr>
<td>5 Gastro-oesophageal reflux disease</td>
<td>101</td>
</tr>
<tr>
<td>Jason Hawrelak</td>
<td></td>
</tr>
<tr>
<td>6 Food allergy/intolerance</td>
<td>118</td>
</tr>
<tr>
<td>Jane Frawley</td>
<td></td>
</tr>
<tr>
<td>7 Liver dysfunction and disease</td>
<td>130</td>
</tr>
<tr>
<td>Ses Salmond</td>
<td></td>
</tr>
<tr>
<td>8 Respiratory infections and immune insufficiency</td>
<td>159</td>
</tr>
<tr>
<td>David Casteleijn and Tessa Finney-Brown</td>
<td></td>
</tr>
<tr>
<td>9 Asthma</td>
<td>183</td>
</tr>
<tr>
<td>David Casteleijn and Tessa Finney-Brown</td>
<td></td>
</tr>
<tr>
<td>10 Congestive respiratory disorders</td>
<td>205</td>
</tr>
<tr>
<td>David Casteleijn and Tessa Finney-Brown</td>
<td></td>
</tr>
<tr>
<td>11 Atherosclerosis and dyslipidaemia</td>
<td>224</td>
</tr>
<tr>
<td>Michael Alexander</td>
<td></td>
</tr>
<tr>
<td>12 Hypertension and stroke</td>
<td>243</td>
</tr>
<tr>
<td>Michael Alexander</td>
<td></td>
</tr>
<tr>
<td>13 Chronic venous insufficiency</td>
<td>257</td>
</tr>
<tr>
<td>Matthew J Leach</td>
<td></td>
</tr>
<tr>
<td>14 Anxiety</td>
<td>270</td>
</tr>
<tr>
<td>Jerome Sarris</td>
<td></td>
</tr>
<tr>
<td>15 Depression</td>
<td>291</td>
</tr>
<tr>
<td>Jerome Sarris</td>
<td></td>
</tr>
<tr>
<td>16 Insomnia</td>
<td>313</td>
</tr>
<tr>
<td>Jerome Sarris</td>
<td></td>
</tr>
<tr>
<td>17 Headache and migraine</td>
<td>328</td>
</tr>
<tr>
<td>Phillip Cottingham</td>
<td></td>
</tr>
<tr>
<td>18 Stress and fatigue</td>
<td>350</td>
</tr>
<tr>
<td>Tini Gruner and Jerome Sarris</td>
<td></td>
</tr>
<tr>
<td>19 Diabetes type 2 and insulin resistance</td>
<td>371</td>
</tr>
<tr>
<td>Tini Gruner</td>
<td></td>
</tr>
<tr>
<td>20 Thyroid abnormalities</td>
<td>399</td>
</tr>
<tr>
<td>Tini Gruner</td>
<td></td>
</tr>
<tr>
<td>21 Dysmenorrhoea and menstrual complaints</td>
<td>423</td>
</tr>
<tr>
<td>Jon Wardle</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Topic</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>22</td>
<td>Endometriosis</td>
</tr>
<tr>
<td>23</td>
<td>Polycystic ovarian syndrome</td>
</tr>
<tr>
<td>24</td>
<td>Menopause</td>
</tr>
<tr>
<td>25</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>26</td>
<td>Fibromyalgia</td>
</tr>
<tr>
<td>27</td>
<td>Acne vulgaris</td>
</tr>
<tr>
<td>28</td>
<td>Inflammatory skin disorders—atopic eczema and psoriasis</td>
</tr>
<tr>
<td>29</td>
<td>Benign prostatic hypertrophy</td>
</tr>
<tr>
<td>30</td>
<td>Recurrent urinary tract infection</td>
</tr>
<tr>
<td>31</td>
<td>Autoimmune disease</td>
</tr>
<tr>
<td>32</td>
<td>Cancer</td>
</tr>
<tr>
<td>33</td>
<td>Paediatrics</td>
</tr>
<tr>
<td>34</td>
<td>Fertility, preconception care and pregnancy</td>
</tr>
<tr>
<td>35</td>
<td>Ageing and cognition</td>
</tr>
<tr>
<td>36</td>
<td>Bipolar disorder</td>
</tr>
<tr>
<td>37</td>
<td>Attention deficit and hyperactivity disorder</td>
</tr>
<tr>
<td>38</td>
<td>Chronic fatigue syndrome</td>
</tr>
<tr>
<td>39</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>40</td>
<td>Pain management</td>
</tr>
<tr>
<td>41</td>
<td>Polypharmacy and drug–nutraceutical interactions</td>
</tr>
<tr>
<td></td>
<td>Appendix 1 Drug–herb interaction chart</td>
</tr>
<tr>
<td></td>
<td>Appendix 2 Drug–nutrient interaction chart</td>
</tr>
<tr>
<td></td>
<td>Appendix 3 Chemotherapy drugs and concurrent nutraceutical use</td>
</tr>
<tr>
<td></td>
<td>Appendix 4 Food sources of nutrients</td>
</tr>
<tr>
<td></td>
<td>Appendix 5 Laboratory reference values</td>
</tr>
<tr>
<td></td>
<td>Appendix 6 Taxonomic cross-reference of major herbs</td>
</tr>
<tr>
<td></td>
<td>Index</td>
</tr>
</tbody>
</table>
Naturopathy is broadly founded on the concept of creating health and engaging healing through habits of living with respect to natural laws of physiology and through therapeutics that apply the tenets of the healing process within living systems. These tenets are increasingly supported by a wealth of scientific evidence. When I entered the profession in 1978 I was drawn to the field because it clearly was an answer to the repeatedly ineffective healthcare I had personally experienced through ongoing treatment for a condition in which my symptoms were treated with the same substance but without lasting results. During an appointment with two naturopathic doctors-in-training I discovered that they were looking at reasons underlying the condition rather than focusing on its symptoms. These doctors asked about lifestyle stress, nutrition and other issues that were maintaining the dysfunctional process in my body. This was indeed an epiphany for me—their approach addressed all aspects of the way we live as human beings: environment, relationships, food, exercise, sleep, inborn susceptibilities and socioeconomic, spiritual and behavioural determinants. The goal was not only for me to be healthy but also for me to recognise that I could not be healthy in unhealthy surroundings. At that moment I realised naturopathy was not a group of therapies; it is a unique approach to how we live that incorporates therapies within a comprehensive framework of tenets to create healthy people in a healthy world. These tenets, now referred to as the naturopathic determinants of health, were originally proposed as a component of the Unity of Cause and Cure theory by Clark (1925) and by Lindlahr (1913) and are synergistic with widely recognised determinants of health promoted within the public health arena. It is gratifying to now witness our international colleagues further elucidate the evidence base supporting these naturopathic tenets central to wellness and health promotion and their practical application with patients. The editors, internationally recognised academic, policy and research leaders Sarris and Wardle, together with their expert authors have done a stellar job organising these evidence-based strategies into a prescriptive approach which moves beyond therapeutic substances and engages the physiological foundations of health to engage increased vitality and thus the healing process, or vis medicatrix maturae.

Today, as a naturopathic physician, I remain dedicated to naturopathy’s fundamental goal of health creation and its definition of health, which entails a sense of vitality and optimal wellness. Our global healthcare system is progressing slowly towards this unattained vision of health creation (rather than disease management) in people, the world community and the natural environment—all are critical components of the health equation. Yet, we are making progress. In 2000, for instance, while hosting the US Integrative Medicine Industry Leadership Summit, conference chair John Weeks (publisher/editor, Integrator Blog) polled conference participants for their position on this statement: ‘Complementary and alternative medicine is a tool of our deeper mission of transformation which will be successful only if we help birth a thriving industry of health creation’. Among the 87% of respondents, 84% agreed and nearly 60% ‘strongly agreed’. I soon began to recognise health creation tenets within traditional world medicines, within the integrative health and medicine movement and within traditional naturopathy, that now is seeking to re-codify health creation into its textbooks and
curricula (e.g. Pizzorno & Murray’s *Textbook of Natural Medicine*, 1999–2012). *Clinical Naturopathy* is an exceptional undertaking and a vital contribution within the rising global tide addressing health creation.

Although the concept of health creation is not new, it generally has evaporated from the purview of healthcare in the last 250 years. In the early 1980s, as I entered clinical practice, the US was at the brink of a burgeoning healthcare crisis recently confirmed by a watershed report from the Institute of Medicine.¹ Despite the population’s increased lifespan of 20 years and its enormous expenditure on healthcare, the US nevertheless is now experiencing an astounding decrease in both lifespan and ‘healthspan’. Those added 20 years are not healthy years but are burdened by chronic disease and a declining ability of the healthcare system to address these intensified needs. Other nations are experiencing similar statistics. The report cites reasons for this ‘health disadvantage’¹ as including health systems, health behaviours, social and economic conditions and physical environments. The National Academy of Sciences has issued a powerful call to action stating that ‘we know what to do, and we need to act now’. And to do so we need rigorous, practical tools for health creation.

In countries such as Australia where naturopathy is thriving, healthcare systems now have a new and powerful tool in the quest for health creation. Sarris and Wardle further operationalise this effort in *Clinical Naturopathy* by providing a practical clinical handbook that includes succinct overviews of historical and modern naturopathic concepts such as its *principles of practice* and the *therapeutic order*, with a particularly strong emphasis on lifestyle, wellness and prevention strategies. We could indeed consider this work akin to a new *Merck Manual* for clinical health creation supported by current experimental evidence concerning traditional naturopathic concepts. *Clinical Naturopathy*’s focus on functional systems, with an emphasis on determinants of health, gives clinicians a practical way to implement levels 1 and 2 of the therapeutic order—interventions that we believe are a vital component of health creation. Its coverage of naturopathic case taking and diagnostic perspectives successfully incorporates the vitalist worldview that strongly underpins naturopathic thinking and is essential to the clinical goal of increasing a patient’s vitality and healing response. This text is a groundbreaking milestone in disseminating and communicating the rigorous principle-based application of naturopathy and will be extensively referenced in the forthcoming *Foundations of Naturopathic Medicine* textbook (in which Dr Wardle serves as an associate editor).

A universal issue I have observed in my legislative and policy work with the National Institutes of Health Center for Complementary and Alternative Medicine (NCCAM), the White House Commission on Complementary and Alternative Medicine (WHCCAM) and the Center for Medicare and Medicaid Services (CMS) Medicare Coverage Advisory Committee (MCAC) and other agencies, is the existing tension between the evidence for substance-based natural therapeutics versus the need for whole-practice research models that implement the health-creating potential in naturopathy and other integrative health disciplines. In the US today, a cacophony of voices, including (among many) the Integrative Healthcare Policy Consortium (IHPC), the Academic Consortium for Complementary and Alternative Healthcare (ACCAHC), the Academy of Integrative Health and Medicine (AIHM), the Institute of Medicine (IOM) and the Institute for Healthcare Improvement (IHI) under the leadership of Donald Berwick, MD,² have reiterated the call for health creation. Addressing the innovation required for healthcare practices and systems to attain this goal, Berwick acknowledges that ‘the way to health may be vastly further from the current design of care than we may at first wish it to
be, or believe it to be … The pursuit of health, the creation of health, may require something even bolder. The redesign we need may be even more radical than we have imagined. Clinical Naturopathy is a landmark step towards the innovation required for health creation and another link in the long chain of codification of naturopathic knowledge. This textbook will further enable today’s clinicians to continue the timeless naturopathic approach of ‘treating disease by restoring health’. With the launch of this second edition, Drs Sarris and Wardle hope Clinical Naturopathy contributes to ‘shaping better healthcare’. As all of us steadily progress towards the call for health creation and changing the therapeutic order of global healthcare, I’m certain these distinguished authors and this book will have achieved their goal.

Pamela Snider, ND
Executive and Senior Editor
Foundations of Naturopathic Medicine Project
North Bend, Washington

Preface

The profession of naturopathy is steadily evolving. It was intended with the release of the first edition of *Clinical Naturopathy* that our text would play a role in that evolution. We have pleasingly received consistent positive feedback that the book has contributed to raising the standard of the profession towards a more evidence-based model. As discussed in the preface of the first edition, we do however recognise that the field should not sacrifice the core philosophical tenants that place it as a unique healing system in the pursuit of ‘evidence-based medicine’. To that end, the creation of the second edition was focused on reconnecting more with the fundamentals of naturopathy, as well as pushing the scientific boundaries even further. As an example, this edition has a ‘wellbeing’ chapter that outlines the principles of naturopathic practice and provides a foundation for a prescriptive approach beyond the product-focused world of modern naturopathy. To balance this with a deepening scientific focus, we have an expanded diagnostics chapter with a new section on the emerging field of pharmacogenomics. We have also amended the appendices section, strengthening the elements where clinicians and educators requested more information, while removing parts that may be seen as tokenistic or better placed in more specialised texts (e.g. iridology and traditional Chinese medicine).

In respect to the changes for this second edition, we first wished to harmonise the chapters and provide a more cogent structure. By removing duplication and consolidating some material, we have been able to make room for an abundance of new material (including four new chapters and updated research and references). As patients rarely fit into textbook examples, and as individualisation of treatment is integral to naturopathic philosophy, we made the tough decision of omitting the case studies. This, too, was based on extensive feedback from practitioners who told us they wanted more information to critically apply to individual patients rather than prescriptive protocols that may or may not be relevant to their particular patients.

We respect that the practise of naturopathic medicine is complex and individualised, and thus acknowledge that this text does not provide a definitive ‘how-to’ guide. As with the first edition, the purpose of this text is to articulate evidence-based clinical practice (principles, treatment protocols and interventions) in a reader-friendly format for practitioners, academics and students. We wanted the book to be comprehensive enough as a robust desk reference to adequately provide the information necessary to inform most clinical scenarios, but compact enough to be carried between classes. It is a book we hope will be thumbed through extensively, rather than one that spends most of its life on a shelf.

A strength of this text that we have maintained, is that it explores the key principles and philosophies used in modern naturopathy for treating a range of conditions. The essence of this is detailed in the ‘key treatment protocols’ section in each chapter. An additional strength is the critical evaluation of the current evidence of both diagnostic and practice methods, and CAM interventions. This differentiates *Clinical Naturopathy: an evidence-based guide to practice* from some other publications that, while informative, often do not provide an evidence-based, referenced analysis of the treatment protocols underpinning the therapeutic use of CAM interventions.
To provide a balanced and truly academic discussion, the limitations of the book must be outlined. First, it is recognised that it is not possible to detail all diseases and disorders that are encountered in clinical practice. As any naturopathic clinician will know, people are treated, not diseases, and each person manifests a unique combination of variations of signs and symptoms rather than an isolated textbook diagnosed disease. Regardless, categorisation by major diseases and illnesses is a necessity to provide a framework with which to discuss naturopathic treatment protocols and interventions. The protocols and principles discussed in each chapter will in many cases be clinically relevant to the treatment of various other conditions where similar underlying causes exist. To assist readers we have facilitated some links between chapters, but we also acknowledge that there are far more than has been detailed.

With respect to the evidence reviewed, it should be noted that we focus primarily on the major evidence from clinical trials over that of in vivo or in vitro studies. Traditional evidence is also discussed when relevant. It will be apparent to readers that not every method, diagnostic technique or intervention included in this book has solid clinical evidence, and some herbal medicines or nutrients have only traditional evidence. It would be remiss to ignore those treatments and practices based on traditional evidence that form core parts of modern naturopathic practice in strict deference to modern scientific evidence. Regardless, research is undoubtedly the best way to uncover ‘new knowledge’ and test ‘old knowledge’. One of the developments we hoped to see arise from the last edition was a further interest in conducting research that accurately reflects and tests naturopathic clinical practice. Research in the naturopathic medicine field, however, remains nascent, and more effort is required to foster research in the field.

We aimed to make this an easy-to-read clinical text; because of this some technical details such as the use of \(p \) values and effect sizes were omitted from the narrative and limited to the evidence tables. In light of this, the term ‘significant’ has been used when an intervention is revealed to have a \(p \) value of \(< 0.05\) (likely to occur less than 5% due to chance). As this is meant to be a clinical reference, rather than a purely academic tome, detailed analysis of each and every trial was not entered into. However, all treatments have been duly referenced and readers, as always, are encouraged to explore these further. A selection of relevant further reading has been listed by individual contributors for those who wish to undertake additional investigation of the chapter content. A vocabulary alteration that can be noted in this edition is the use of the word ‘nutraceutical’ throughout the text. This is in place of the generic use of the term ‘CAM’, and is used to describe any nutrient or plant-based medicinal product.

The future direction of naturopathy and complementary medicine more broadly appears positive, with mainstream acceptance evolving in countries such as Australia, the United States, the United Kingdom, Germany, Canada and South Africa. To maintain the development of the profession and to enable more effective healers, education is paramount. Clinical Naturopathy: an evidence-based guide to practice, 2nd edition is developed to be at the forefront of naturopathic education in the 21st century. This book is designed for naturopaths, allied health or orthodox medical practitioners, researchers and anyone with an interest in principles, practices and treatments of natural medicine. We are immensely proud of this second edition and the fantastic contributions from the leaders in our field, and feel honoured that this may in part contribute to shaping better healthcare.

Jerome Sarris and Jon Wardle
Liver dysfunction and disease

Ses Salmond
ND, BA, PhD

OVERVIEW

It is important to understand the functions of the liver, the systemic implications of liver disease and the importance of also treating the liver as an adjunct to other conditions, such as metabolic syndrome and hormone dysregulation.

The liver is involved in the metabolism of carbohydrates, proteins and fats. It converts simple carbohydrates in the form of fructose and galactose to glucose and then converts glucose to glycogen for storage. If carbohydrate intake exceeds requirements sugars are converted to triglycerides (TG), contributing to dyslipidaemia.1

Protein metabolism in the liver is responsible for the synthesis of non-essential amino acids and functional proteins such as: fibrinogen and prothrombin for clotting; transferrins and lipoproteins for transport of iron and cholesterol, respectively; albumin for maintaining oncotic pressure; and globulins for immune function. Amino acids are also important for maintaining blood pH. If protein metabolism in the liver is disturbed this can lead to: bleeding disorders such as oesophageal varices and excess bruising; ascites due to low albumin and reduced oncotic pressure; impaired immune function; anaemia and fatigue as seen in non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD) and hepatitis C virus (HCV) infection.

The liver is also involved in the production and regulation of triglycerides, phospholipids, lipoproteins and cholesterol. It metabolises fats by lipolysis and transforms fatty acids via β-oxidation to acetyl-CoA, the substrate for energy production via the Krebs cycle.1 The liver stores fat-soluble vitamins (A, D, E, K) and other vitamins and minerals (B12, Zn, Fe, Cu, Mg). The liver converts carotene to vitamin A, folate to 5-methyl tetrahydrofolic acid and vitamin D to 25-hydroxycholecalciferol.

The liver synthesises bile, which emulsifies lipids and fat-soluble vitamins in the intestines to aid digestion and prevent cholesterol precipitation in the gallbladder. Bile synthesis and excretion is also a mechanism for reducing excess cholesterol. Another major role of the liver is the metabolism and detoxification of: alcohol; synthetic and natural drugs; steroidal hormones such as the corticosteroids, testosterone, progesterone and oestrogen; non-steroidal hormones such as thyroid hormones; and insulin and growth hormones. It also converts ammonia to urea.1
Common pathways of liver disease
Liver diseases can have a variety of causes but can progress through similar pathology, therefore different aetiologies of liver disease can have common treatments, as shown in Figure 7.1.

Aetiologies
- Viral infection—hepatitis (A, B, C, D, E)
- NAFLD/non-alcoholic steatohepatitis (NASH), dysregulated free fatty acid (FFA) metabolism and accumulation due to obesity, insulin resistance and metabolic syndrome
- ALD, accumulation of toxins due to excess alcohol consumption

Common pathology
- *Hepatitis (B and C).* Increased oxidative stress as a direct consequence of the virus and indirectly as a result of the immune response.
- *NAFLD and NASH.* Increased oxidative stress as a result of FFA accumulation and lipid peroxidation, exacerbated by increased inflammatory cytokines from adipose tissue, damages the liver.
- *ALD.* Increased oxidative stress as a result of toxins.

Common treatment—reduction of hepatic inflammation
Oxidative stress in liver disease accelerates inflammation, fibrosis and necrosis, creating additional oxidative stress, which causes further damage to proteins, DNA, lipids and sensitises redox-regulated necrotic cell signalling pathways, affecting gene expression2 and

Figure 7.1
Common pathology and treatment in liver diseases

HCV = hepatitis C virus; NFLD = non-alcoholic liver disease; NASH = non-alcoholic steatohepatitis; ALD = alcoholic liver disease

Hepatoprotection
Reduce OS, inflammation, fibrosis, cirrhosis and cancer

Support
Liver and gastrointestinal function, depression and fatigue
causing mitochondrial dysfunction and pathology. Increased oxidative stress leads to reduced liver function and can progress through fibrosis to cirrhosis and possibly cancer.

Liver disease can lead to metabolic syndrome with dysglycaemia or dyslipidaemia and increases in the frequency of comorbidities.

Treatment based on reducing oxidative stress, inflammation, regulating digestive dysfunction and supporting fatigue will assist in the treatment of most chronic liver diseases.

Common comorbidities
- Metabolic syndrome
- Cardiovascular disease
- Depression and fatigue
- Hormonal dysregulation
- Dyspepsia

NON-ALCOHOLIC FATTY LIVER DISEASE
NAFLD is the hepatic manifestation of metabolic syndrome. The Asia-Pacific Guidelines on NAFLD recommend that the term NAFLD is retained for cases of fatty liver associated with the metabolic complications of over-nutrition, usually with central obesity and overweight. NAFLD is the most common liver disease worldwide in adults and children. NAFLD usually occurs in the fourth or fifth decade of life and is predominantly asymptomatic. NAFLD may progress from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. An estimated 20–35% of the general population has steatosis, 10% developing more progressive NASH, which is associated with increased risk of cardiovascular and liver-related mortality.

The prevalence of NAFLD is higher among the obese and patients with type 2 diabetes. In fact in a cohort of NAFLD patients, 50% had diabetes, 44% had hypertension and 12% had previous vascular disease. The environmental factors involved in NAFLD and metabolic syndrome are diet, physical activity and gut microflora. Metabolic syndrome with dysglycaemia, dyslipidaemia and obesity results in an increase in the level of FFAs from the breakdown of adipose tissue and from the metabolism of excess dietary carbohydrates (hyperlipidaemia); this dysregulation leads to lipotoxicity in the liver, causing oxidative stress and liver inflammation.

Pathophysiology
The hallmark of NAFLD is the deposition of excess FFAs within hepatocytes and is associated with the loss of insulin sensitivity. There are theories as to whether the fat
accumulation in the hepatocytes occurs first or IR; the literature is moving towards the theory that IR occurs first.7,10

Hepatic FFAs’ concentration is increased by the following:15,16

- Obesity and IR cause excess FFAs in the liver from adipose tissue—60%.
- IR increases \textit{de novo} lipogenesis (DNL) from excess dietary carbohydrates—25%.
- Poor diet increases dietary fatty acids—15%.
- Lipotoxicity, oxidative stress and mitochondrial damage results in decreased hepatic β-oxidation of FFAs.17
- Steatosis reduces very low density lipoprotein (VLDL) synthesis, export and clearance of FFAs.

Excess FFAs accumulate in the liver, leading to macrovesicular steatosis and lipid-induced cellular injury, worsening hepatic IR and reducing hepatic function; this contributes to a vicious cycle.7,10 Both IR and obesity are pro-inflammatory conditions, resulting in high oxidative stress exacerbated by the aldehyde by-products of lipid peroxidation, which increase the production of pro-inflammatory cytokines and recruit inflammatory cells into the liver.10

In summary, the pathophysiology of NAFLD is complex and includes IR, disrupted lipid, protein and carbohydrate homoeostasis, oxidative stress, FFA-mediated lipotoxicity, defects in mitochondrial function, endoplasmic reticulum stress, cytokine mediated toxicity, inflammation and fibrosis.17

Diagnosis

A diagnosis of NAFLD requires confirmation of hepatic steatosis, with the additional exclusion of excessive intake of alcohol. The alternative causes for fatty liver (genetic, viral, metabolic, drug) must be excluded before a diagnosis of NAFLD can be made.10

Clinically, elevated liver transaminases, gamma glutamyl-transpeptidase (GGT), hypertriglyceridaemia, ferritin9 and numerous weight-loss and weight-gain cycles would alert the practitioner to a possible NAFLD diagnosis. Serum ferritin is elevated in 20–50% of NAFLD patients and the raised transferrin saturation (> 55%) occurs in 5–10% of patients; both may reflect hepatic steatosis and fibrosis due to oxidative stress and inflammation. Hypertriglyceridaemia is often present in more than 50% of NAFLD patients.9 Refer to Appendix 5 for more information on laboratory reference values.

An ultrasound of the liver, computer tomography and magnetic resonance imaging will detect moderate to severe steatosis (> 30% steatosis). A liver biopsy may be necessary to quantify the degree and stage of hepatic steatosis and fibrosis. The presence of more than 5% of steatotic hepatocytes in a section of liver tissue from a liver biopsy is the accepted minimum standard for a histological diagnosis of NAFLD.18

DIFFERENTIAL DIAGNOSIS—NAFLD

- Non-alcoholic steatosis
- ALD7
- HCV
- Wilson’s disease7
- Cardiovascular disease
- Gallbladder disease
- Irritable bowel syndrome
Risk factors
Practitioners should be aware of the existence of conditions that commonly co-occur with NAFLD. The presence of NAFLD is an independent risk factor for coronary artery disease. The hepatic metabolism of methionine is perturbed in NASH, which may provide a reason for the increased coronary artery risk in this population. Recently polycystic ovarian syndrome was proposed as the ovarian manifestation of metabolic syndrome.

Risk factors for mortality in NAFLD patients are the presence of cirrhosis, impaired fasting glycaemia or diabetes.

Conventional treatment
Although there is no pharmacological agent approved for treating NAFLD, vitamin E (in patients without type 2 diabetes mellitus) and thiazolidinedione pioglitazone (in patients with and without type 2 diabetes mellitus) have shown the most consistent results in randomised controlled trials. However, a recent systematic review of the use of thiazolidinediones (peroxisome proliferator activator receptor-γ agonists) in NAFLD concluded that while they modestly improve fibrosis and hepatocellular ballooning, it is at the cost of significant weight gain. In seven randomised trials the average weight gain was 4.4 kg (CI, 2.6–5.2 kg). There is an increased cardiovascular risk with rosiglitazone. Other side effects are fluid retention and osteoporosis. The evidence that insulin-sensitising drugs are able to modify the natural history of NAFLD is not currently available.

Key treatment protocols
The first goal is to address the metabolic syndrome picture and reverse the lipotoxicity and insulin resistance via lifestyle interventions using diet and exercise.

At the same time it is important to protect the liver from oxidative stress and subsequent inflammation and fibrosis, as well as supporting liver function and healing. Supporting the digestive system will reduce the dyspeptic symptoms of NAFLD thereby improving client wellbeing and nutrient status. Two of the major symptoms of NAFLD are fatigue and depression so in order to motivate the client to make positive lifestyle choices the treatment protocol needs to address these issues.

NAFLD: at-risk groups
- Histological NASH on diagnosis
- Metabolic syndrome
- Major health conditions (especially cardiovascular disease)
- Older age
- Smokers

Conventional treatment
Although there is no pharmacological agent approved for treating NAFLD, vitamin E (in patients without type 2 diabetes mellitus) and thiazolidinedione pioglitazone (in patients with and without type 2 diabetes mellitus) have shown the most consistent results in randomised controlled trials. However, a recent systematic review of the use of thiazolidinediones (peroxisome proliferator activator receptor-γ agonists) in NAFLD concluded that while they modestly improve fibrosis and hepatocellular ballooning, it is at the cost of significant weight gain. In seven randomised trials the average weight gain was 4.4 kg (CI, 2.6–5.2 kg). There is an increased cardiovascular risk with rosiglitazone. Other side effects are fluid retention and osteoporosis. The evidence that insulin-sensitising drugs are able to modify the natural history of NAFLD is not currently available.

Key treatment protocols
The first goal is to address the metabolic syndrome picture and reverse the lipotoxicity and insulin resistance via lifestyle interventions using diet and exercise.

At the same time it is important to protect the liver from oxidative stress and subsequent inflammation and fibrosis, as well as supporting liver function and healing. Supporting the digestive system will reduce the dyspeptic symptoms of NAFLD thereby improving client wellbeing and nutrient status. Two of the major symptoms of NAFLD are fatigue and depression so in order to motivate the client to make positive lifestyle choices the treatment protocol needs to address these issues.

Naturopathic Treatment Aims
- Encourage beneficial dietary and lifestyle changes.
- Treat the underlying metabolic causes: modulate fatty acid pathways, regulate blood glucose, reduce weight.
- Reduce hepatic inflammation: reduce oxidative stress.
- Reduce inflammation.
- Reduce the likelihood of fibrosis.
- Support liver function.
- Support digestive function.
- Support mood and energy levels.
Encourage beneficial dietary and lifestyle changes

Dietary and lifestyle advice

Identifying and removing potential liver stresses is one of the first steps in instigating beneficial lifestyle changes, such as alcohol moderation and smoking cessation. The diet needs to be low in carbohydrates and particularly low in high-fructose corn syrup as fructose is lipogenic and stimulates triglyceride synthesis.\(^{27}\) Where there is a high-fructose diet, especially with soft drink consumption, all the signs relating to NAFLD are present: increased blood glucose, triglyceride, alanine aminotransferase (ALT), cholesterol, weight and hepatic steatosis. In NASH patients high fructose ingestion was associated with hepatic insulin resistance and higher fibrosis.\(^{28}\) High-fructose diets increase hepatic reactive oxygen species (ROS) and macrophage aggregation, resulting in TGF-beta-1 signalled collagen deposition and hepatic fibrosis.\(^{29}\) This potentially leads to decreased copper absorption and a resulting deficiency.\(^{30,28}\)

The diet should also be high in protein, fibre, good fats, antioxidants and anti-inflammatoryary foods such as lean meat and fresh vegetables to regulate blood glucose levels and support antioxidant status, bowel and liver function. High-protein diets prevent and reverse steatosis independently of fat and carbohydrate intake more efficiently than a 20% reduction in energy intake.\(^{31}\) The effect appears to result from small, synergistic increases in lipid and branched-chain amino acids (BCAA) catabolism, and a decrease in cell stress. Similarly, low-carbohydrate diets are useful in reducing circulating insulin levels and decreased intrahepatic triglycerides (IHTG) due to enhanced lipolysis and fatty acid oxidation.\(^{32}\) Studies involving low-carbohydrate diets with less than 50 g/day of carbohydrate saw a reduction in insulin sensitivity and decreased endogenous glucose production rate—more than an isocaloric low-fat diet—and encouraged hepatic and visceral fat loss. Attention to nutrition status is important as malnutrition accounts for more than 60% of patients with severe liver failure and negatively affects clinical outcomes in terms of survival and complications.\(^{33}\)

Exercise or physical activity

Exercise of sufficient duration and intensity will reduce adipose tissue therefore reducing a source of adipose-derived FFAs; it also enhances insulin sensitivity. Exercise will increase muscle mass, adiponectin and the biogenesis of mitochondria. **Endurance exercise** uses muscles that use triglycerides for energy rather than carbohydrates and therefore there is an overall decrease of FFAs and an increase in the \(\beta\)-oxidation of FFAs in NAFLD.\(^{16,26,34,35}\)

There is emerging and growing evidence for the effectiveness of increasing physical activity reducing hepatic fat content,\(^{26}\) regardless of whether it is resistance based or aerobic or combined with diet and weight loss. Therefore it is important to find some form of exercise that is physically possible for the patient. **Resistance exercise** independent of weight loss is also associated with significant reduction in hepatic fat\(^{35}\) and may improve insulin sensitivity more than aerobic exercise alone.\(^{34}\) Resistance exercise may be more accessible to some patients than aerobic exercise and may achieve better compliance than diet, therefore it is a more sustainable treatment option.\(^{35}\)

Aerobic exercise training and dietary restriction can positively affect NAFLD when weight loss approximating 4–9% of body weight is achieved; an inverse correlation between NAFLD and physical activity or fitness levels has also been demonstrated.\(^{16,26,34}\) Weight loss, irrespective of diet, reduces aminotransferases in obese women with NAFLD\(^{36}\) and 7–10% weight loss coincided with significant histological improvement.
of liver disease. Therefore a combination of exercise, diet and weight loss is synergistic in the amelioration of liver disease in NAFLD.

A systematic review with meta-analysis concluded that exercise is efficacious in modifying liver fat in adults. Interventions ranged from two to 24 weeks in duration and prescribed exercise on two to six days per week at intensities between 45% and 85% of VO_{2peak}. The review could not report an improvement in ALT due to many ALT measures being normal at baseline and because studies with positive results were excluded due to lack of a control group. In a study that lacked a control group a near 50% reduction in ALT was achieved in patients who complied with the prescribed exercise regimen, indicating reduced liver inflammation. The exercise regimen consisted of aerobic exercise for 30 minutes per day at a heart rate of 60–70% of maximal for at least five days a week for three months.

In rodents regular exercise reduced DNL, increased β-oxidation and increased the removal and clearance of FFAs via VLDL. Sedentary behaviour, on the other hand, resulted in the reduced oxidation of fatty acids and mitochondrial activity with the up-regulation of fatty acid synthesis. Kistler et al. suggest that intensity of exercise may be more important than duration or total volume of exercise in the treatment of NAFLD, with vigorous activity associated with significantly lower odds of fibrosis. The suggested mechanisms for the benefits of vigorous exercise over moderate are that vigorous exercise increases adiponectin and AMP-activated protein kinase (AMP-kinase) in the liver, which increases fatty acid oxidation, decreases glucose production, regulates mitochondrial biogenesis and reduces inflammation and fibrosis. Decrease in adiponectin plays a significant role in metabolic disorders such as obesity, type 2 diabetes, coronary heart disease and metabolic syndrome due to its insulin sensitising, anti-inflammatory and anti-atherogenic properties. Decreases in adiponectin and increases in leptin in metabolic syndrome and obesity are linked to fibrosis in NAFLD. Coker et al. found that exercise training with calorie restriction achieved better results in visceral fat loss, weight loss and improvements in insulin resistance than calorie restriction alone.

Treat the underlying metabolic causes

Modulate fatty acid pathways and regulate blood glucose

In obese individuals it is important to reduce adipose tissue as a source of FFAs as well as to control insulin resistance that results in excess lipolysis of adipose tissue. Also, controlling insulin resistance will help decrease rates of DNL from carbohydrate metabolism. Exercise can reduce adipose tissue and improvements in insulin resistance combined with a diet containing low carbohydrates and healthy fats are essential to improving NAFLD. Strong evidence exists for **omega-3 fatty acids** reducing hepatic fat content in children with NAFLD. **Vitamin E (natural)** as a fat-soluble antioxidant is also useful in reducing lipid peroxidation in NAFLD.

Whole _Curcuma longa_ oleoresin up-regulated the expression of genes related to glycolysis, β-oxidation and cholesterol metabolism in obese diabetic KKAy mice and down-regulated the gluconeogenesis related genes (see Chapter 19 on diabetes for more information).

Reduce hepatic inflammation

The inflammatory process causes oxidative stress and vice versa, driving liver disease progression. Therefore a key treatment goal in NAFLD is to reduce hepatic inflammation.
and oxidative stress by using hepatoprotective herbal medicines with specific hepatic anti-inflammatory and antioxidant activity. Hepatoprotection is defined as more than just antioxidant and anti-inflammatory effects; it also includes several non-mutually exclusive biological activities including antifibrotic, antiviral and immunomodulatory functions.47

One of the ways that oxidative stress damage can be reduced is through hormesis. It is postulated that hormesis is a mechanism by which phytochemical adaptogens such as *Astragalus membranaceus* and antioxidant-rich plants such as *Silybum marianum* strengthen mitochondria by improving the β-oxidation of FFAs, increasing energy and stamina.48 In calorie restriction, exercise and hormesis, increased ROS up-regulates adaptive responses. This results in a net reduction in ROS due to the stimulation of antioxidant defences and detoxification.49 This adaptation or preconditioning of the mitochondria has been named ‘mitochondrial hormesis’ or ‘mitohormesis’.50,49,51 These hormetic pathways, activated by phytochemicals, include the sirtuin-FOXO pathway, the NF-kappa B pathway and the Nrf-2/ARE pathway.48,52,53 This exogenous form of hormesis ‘xenohormesis’.48,53 Bitter foods such as dandelion coffee, rocket and radicchio also have a hormetic effect as well as stimulate digestion and aid dyspepsia.

Silymarin (an active constituent of *Silybum marianum*) protects cells against oxidative stress by stabilising cell membranes, radical scavenging, chelating iron and supporting endogenous antioxidants such as glutathione.54 *Silybum marianum* also has anti-inflammatory55,56 and antifibrotic57,58 effects through the reduction of inflammatory cytokines and TNF-α as well as hypoglycaemic, choleretic and cholagogic actions. The latter two actions help remove fat from the liver through the fatty acid metabolism pathways, thereby preventing deposition of fat in the liver.

Curcuma longa interrupts insulin signalling, which stimulates hepatic stellate cell activation (a key element in fibrogenesis), suppresses the gene expression of type I collagen and also increases the de novo synthesis of glutathione, thereby exerting anti-inflammatory, antioxidant, anti-diabetic and antifibrotic effects.59 The antioxidant and anti-inflammatory actions of *baicalin* and *Scutellaria baicalensis* make it a very useful clinical tool in NAFLD60 and ALD61 management.

Baicalin, the active ingredient in *Scutellaria baicalensis*, has been shown to reduce dyslipidaemia and hepatic lipid accumulation, improve hepatic steatosis and reduce visceral fat mass in vivo.60

Glycyrrhiza glabra has an anti-inflammatory effect in NAFLD by lowering elevated ALT and aspartate aminotransferase (AST) in a randomised, double-blind, placebo-controlled clinical trial.62 The biologically-active metabolite of *glycyrrhizin* (18 beta-glycyrrhetinic acid (GA)) prevented FFA-induced lipid accumulation and toxicity by stabilising the lysosomal membranes, inhibiting cathepsin B activity and inhibiting mitochondrial cytochrome c release.63 Another preparation of GA (*carbenoxolone*, 3-hemisuccinate of glycyrrhetinic acid) inhibited pro-inflammatory cytokine expression, inhibited FFA-induced ROS formation and reversed FFA-induced mitochondrial membrane depolarisation in HepG2 cells. GA also prevented the development of fatty liver by inhibiting the sterol regulatory element binding protein 1c (SREBP-1c) expression and activity via antiapoptotic mechanisms and the inhibition of inflammatory cytokines and ROS formation in the liver.64

Grapeseed extract improved markers of inflammation and glycaemia in obese type 2 diabetes mellitus patients65 and reduced ALT and improved grade of steatosis in NAFLD patients.66 (See Chapter 19 on diabetes and Chapters 11–13 on the cardiovascular system for more information.)
Both omega-3 and vitamin E (natural) have shown some effectiveness in reducing inflammation in NAFLD and/or NASH. Deficiencies in vitamin E lead to an increased risk of developing advanced inflammation (6.5 fold) and lower riboflavin intake is associated with increased risk of advanced steatosis (6.2 fold) compared with those chronic hepatitis C patients with adequate intakes.

 Accumulation of lipids in the hepatocyte impairs the metabolic capacity of the mitochondria, leading to a buildup of reduced electron transport chain substrates and lipid peroxidation, leading to increased ROS. Therefore stimulation of mitochondrial function through L-carnitine, alpha lipoic acid and coenzyme Q10 may be effective in NAFLD and other liver conditions associated with mitochondrial dysfunction. Melatonin (5 mg) and tryptophan (500 mg) twice daily for four weeks reduced the plasma levels of pro-inflammatory cytokines in NASH.

Support liver function
Herbs that support liver function such as Silybum marianum, Berberis aristata, Cynara scolymus, Curcuma longa and Schisandra chinensis also help support the production and elimination of bile that promotes the elimination of cholesterol, which lowers FFAs (see Table 7.1 and Figure 7.2). See the liver detoxification section below for herbs and nutrients specific to support detoxification. SAMe supports methylation and has shown some effectiveness in NAFLD and NASH. N-acetylcysteine (600 mg/day) reduced ALT in NAFLD patients and improved liver function through supporting glutathione production.

Reduced dietary protein intake is an independent predictor of complications in cirrhosis. In those with liver cirrhosis with low serum albumin or globulin, extra protein, approximately 1.0–1.2 g of protein per kilogram of body weight, is required to assist the liver to synthesise proteins. Compromised liver function will also result in reduced protein synthesis, possibly resulting in signs such as prolonged prothrombin time due to reduced synthesis of clotting factors. The provision of a night-time feed to cirrhotic patients led to a body protein increment of about 2 kg of lean tissue sustained over 12 months.

Support liver detoxification
A protocol to enhance liver detoxification is an adjunct treatment to all acute and chronic inflammatory conditions and conditions associated with hormone imbalance through the removal of exogenous and endogenous toxins that may cause oxidative stress, drive inflammation and act as carcinogens.

Liver detoxification refers to the phase I, phase II and phase III enzymes in the liver. Phase I enzymes activate both toxins and drugs, potentially increasing the effects of both. Phase II enzymes conjugate the metabolites of phase I, making them more water soluble and available for excretion, thereby reducing toxic metabolites and the need for therapeutic drugs. Phase III involves the mobilisation of the products of phase II from the intracellular environment to the extracellular environment for excretion as bile, urine, sweat and via the lungs. Toxic compounds such as 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD), polycyclic aromatics and beta-naphthoflavone induce both phase I and phase II activity. Conversely, therapeutic interventions tend to inhibit phase I and induce phase II, protecting the body from a buildup of the toxic metabolites of phase I (Table 7.1 and Figure 7.2).

A detoxification protocol requires, first of all, a healthy diet and good digestive function to reduce the intake and maximise the output of toxins. This should be combined with lifestyle changes such as exercise and relaxation and be supported by foods, nutrients
and herbs that optimise liver function by balancing phase I and phase II enzyme activity and providing antioxidants’ protection.

A healthy diet (see Chapter 3 on wellness) is essential in effective detoxification. A diet high in fibre and water will promote the elimination of waste products and reduce the enterohepatic circulation of toxins. Enterohepatic circulation involves reabsorbing substances through the gastrointestinal tract rather than excreting them. This can be particularly problematic with the reabsorption of hormones excreted via the bile, such as oestrogen, leading to hormone imbalances. Probiotics and prebiotics can help gastrointestinal tract function and reduce the formation of endotoxins such as ethanol and lipopolysaccharide (LPS).100

Table 7.1
Required nutrients, inducers and inhibitors of phase I and phase II85

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Required nutrients</th>
<th>Induced by</th>
<th>Inhibited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2, B3, B6, B9, B12</td>
<td>Tobacco86</td>
<td>Tobacco86, Omeprazole, Ethanol, Hypericum perforatum (hyperforin)97, Caffeine (CYP1A2)98, High-protein diet99, Charcoal-broiled food86, Flavonoids90, Rosmarinus officinalis91</td>
<td>Grapefruit juice92, Oranges92,93, Legumes, Quinidine, Erythromycin, Fluvoxamine, Carum carvi94, Brassica family95, Bioflavonoids97, Cuminum cyminum94, Taraxacum officinale, Allium sativum96,97, Schisandra chinensis98, Glycyrrhiza glabra99, Withania somnifera, Curcuma longa, Foeniculum vulgare100, Cynara scolymus, Silybum marianum101</td>
</tr>
<tr>
<td>Branched-chain amino acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathione</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioflavonoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospholipids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td>Acetylation: B5</td>
<td>Caffeine102 (citral)</td>
<td>Deficiencies in selenium, zinc, B1, B2, molybdenum</td>
</tr>
<tr>
<td>Methylation: B6, B9, B12, SAMe and betaine</td>
<td>Salvia officinalis, Camellia sinensis, Thymus vulgar, Zingiber officinale103, Brassica family104, Bioflavonoids97, Cuminum cyminum94, Taraxacum officinale, Allium sativum96,97, Schisandra chinensis105,106, Humulus lupus107, Glycyrrhiza glabra108, Rosmarinus officinalis109, Withania somnifera, Curcuma longa, Silybum marianum106, N-acetylcysteine</td>
<td>Low-protein diet, NSAIDs, aspirin</td>
<td></td>
</tr>
<tr>
<td>Conjugation: amino acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucuronidation: taurine and glucoronic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathione: glutamate, cysteine and glycine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfation: glutathione, cysteine and methionine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100 Sample proofs © Elsevier Australia
Foods containing flavonoids (e.g. kaempferol, diosmetin, theaflavin and biochanin A) can inhibit the metabolic activation of procarcinogens by phase I enzymes and some dietary flavonoids (e.g. naringenin, quercetin, biochanin A and prenylchalcones) can stimulate the detoxification of carcinogens by inducing phase II enzymes. A review cautions that a number of studies have demonstrated inhibition and induction effects on drug bioavailability by flavonoids, raising concerns about the safe use of flavonoid supplements that are not subject to legal regulations. Allium sativum can be beneficial through an inhibitory effect on phase I and an induction effect on phase II enzymes.
as well as increasing the synthesis of endogenous antioxidants and glutathione via Nrf2/ARE and is therefore very useful in detoxification and easily accessible as a food. Another food example is the phytochemical phenethyl isothiocyanate, a constituent of cruciferous vegetables that can modulate cytochrome P450 composition in human liver at concentrations that can be achieved by dietary intake. This can antagonise the carcinogenicity of chemicals that rely on the CYP1 family for their bioactivation such as heterocyclic amines and polycyclic aromatic hydrocarbons.

Teas can be used to hydrate and to gently cleanse the body, with various herbal teas and dandelion root coffee potential choices. Also the use of culinary herbs and spices such as turmeric, cumin, fenugreek, rosemary and sage is a great way to introduce a variety of herbs into the diet. Diets low in protein may predispose patients to lowered liver detoxification, as key amino acids are involved in these liver processes.

Fasting is also known to enhance the detoxification process, in part because the main source of energy is hydrolysed fatty acid tissue from adipose tissue stores, where many toxins are stored. However, due prudence needs to be displayed, as fasting may liberate toxins faster than they can be eliminated (because in part the adequate substrates from phase II detoxification may be missing or compromised) and may potentially endanger the patient.

Hydrotherapy is thought to increase filtration through the liver by encouraging blood circulation, in addition to aiding excretion through sweating. Sauna therapy has also been used to encourage elimination through the skin, with substantial elimination and significant clinical improvement thought possible through this mechanism. Sauna exposure of five to 15 minutes per day is safe and effective in enhancing detoxification, though caution is advised in patients with recent myocardial infarction or other serious cardiovascular complications, and patients need to be advised that eliminating toxins through the skin may initially irritate (though ultimately improve) conditions such as atopic dermatitis. Many nutrients, particularly trace elements such as zinc, copper, iron and chromium as well as electrolytes, may be lost through sweating and may need monitoring or replacement.

Some herbs have a history of use for detoxification and are used in traditional herbal medicine for their role in supporting liver function including Silybum marianum, Cynara scolymus, Bupleurum falcatum, Schisandra chinensis, Peumus boldo and Taraxacum officinale. Herbs such as Silybum marianum and Schisandra chinensis can increase levels of Nrf2 either by stimulating its release or inhibiting its proteolytic breakdown. Activated Nrf2 translocates into the nucleus where it interacts with small MAF family proteins bound to the antioxidant response element (ARE), allowing transcription of target genes including those that regulate antioxidant and phase II enzymes.

Exercise will also promote hepatic biotransformation processes.

Detoxification is also an area in which unproven and often ineffective remedies are aggressively marketed, both to practitioners and to patients, implying careful consideration before their use in clinical practice. Therefore, while detoxification regimens may provide a clinically valuable adjuvant to treatment, naturopathic practitioners should be sure to focus on more relevant primary treatment aims in the clinical setting. More extreme detoxification methods can be very dangerous and should be avoided. While it is true that many traditional methods may fall into this category, it should also be acknowledged that these traditions were born of a time when environmental toxic burdens were far lower and would have resulted in fewer side effects and lower risk.
Support digestive function

Dyspeptic symptoms associated with NAFLD include burping, bloating, reflux, flatulence and indigestion with intolerances to fatty foods. Common herbal medicines used to stimulate secretion of bile and pancreatic enzymes are *Gentiana lutea* and *Cynara scolymus*. Bitter foods such as dandelion coffee, rocket, radicchio, watercress, radish, cauliflower and the rest of the Brassicaceae family also stimulate digestion. Cholagogues aid digestion and carminatives reduce spasm and wind. Dysbiosis plays a role in the pathogenesis of liver disease through inflammation and damage to the epithelial cells of the intestines. This damage can then expose the liver to intestinally derived toxins such as ethanol and lipopolysaccharides (LPS), which drive inflammation in the liver.\(^{110}\)

Probiotics, prebiotics and increased dietary fibre can be used to help restore intestinal flora balance and function to the gastrointestinal tract. They can be useful in reducing the enterohepatic reabsorption of toxins from the gastrointestinal tract. The inclusion of a range of probiotics such as *Lactobacillus bulgaricus* and *Streptococcus thermophilus* reduce hepatic necroinflammation in NAFLD patients.\(^{120}\) *Bifidobacterium longum* with FOS and lifestyle modification significantly reduced tumour necrosis factor alpha (TNF-\(\alpha\)), C-reactive protein (CRP), serum AST levels, HOMA-IR, serum endotoxin, steatosis and NASH activity score\(^{121}\) (see Chapters 4–6 on the gastrointestinal system for more detail).

Support mood and energy levels

A number of epidemiological studies have found links between chronic liver diseases such as NAFLD and hepatitis B and C with depression.\(^{122,123}\) Weinstein et al. suggest that NAFLD and HCV patients have a higher prevalence of depression than the wider population.\(^{13}\) Depression and mood disorders are often seen in obesity and diabetes mellitus, two of the major metabolic pictures seen in NAFLD. While mood disorders are not always present, they are relevant to some sufferers of chronic liver disease and symptoms must be supported. (See also Chapter 15 on depression and Chapter 18 on stress and fatigue.)

Integrative medical considerations

After a thorough naturopathic consultation, it may become apparent that the patient has a number of risk factors and symptoms that suggest the presence of NAFLD. If this diagnosis is not confirmed at the time of their initial consultation, a referral to a general practitioner in the first instance would be worthwhile for further investigation.

Refer for liver ultrasound or further medical care if there are signs of:

- severe fluctuations in weight (loss and gain)
- elevated GGT
- elevated ALT
- raised triglycerides
- raised ferritin.

Clinical summary

Refer to the naturopathic treatment decision tree (Figure 7.3) regarding clinical decisions in the treatment and management of liver disease. From the thorough case history taking and observation of the clinical signs and symptoms of liver disease, a potential diagnosis of NAFLD may be apparent. It would be useful to confirm the diagnosis of NAFLD with a general practitioner, who may refer the patient for biochemical tests and
liver ultrasound or liver biopsy if indicated. An individualised treatment plan considering causation, age, sex, culture, current dietary and lifestyle factors and family and social history should be discussed with the patient. This treatment plan would address the underlying causes (alcohol, viral infection, metabolic syndrome), support liver and digestive function, reduce inflammation and oxidative stress, address obstacles to healing and encourage beneficial dietary and lifestyle changes.

Figure 7.3
Naturopathic treatment decision tree—liver disease
OTHER LIVER AND BILIARY DISEASES

Hepatitis

Hepatitis, in particular chronic hepatitis C, affects 170 million people worldwide and approximately 2% of the adult Australian population. Chronic hepatitis C can lead to hepatic fibrosis, cirrhosis and hepatocellular carcinoma. It is the leading cause of liver transplantation in Australia. Estimates indicate that 25 per cent of those infected with hepatitis C will clear the virus, with 75 per cent having chronic infection. Clinical symptoms of chronic hepatitis C include fatigue, right upper quadrant pain or discomfort, nausea, malaise, anorexia, pruritus, weight loss, arthralgia, musculoskeletal pain, night sweats and dry eyes (sicca syndrome). Extrahepatic manifestations of chronic hepatitis C are: mixed cryoglobulinaemia, glomerulonephritis, porphyria cutanea tarda, low-grade malignant lymphoma, autoimmune thyroiditis, Sjögren's syndrome, lichen planus, aplastic anaemia, polyarteritis nodosa, erythema nodosum, idiopathic pulmonary fibrosis and diabetes mellitus. The pathophysiology of chronic hepatitis C is multifactorial and the key players are the hepatitis C virus directly, the immune response to HCV infection and oxidative stress.

DIFFERENTIAL DIAGNOSIS

- Chronic fatigue syndrome
- Fibromyalgia
- NASH
- Autoimmune hepatitis
- NAFLD

Risk factors

Modifiable risk factors include:
- intravenous drug and tobacco use
- blood transfusions
- tattoos
- needle-stick injuries
- steatosis
- insulin resistance, type 2 diabetes
- body mass index (BMI) over 25.

Non-modifiable risk factors include:
- age at acquisition of HCV infection
- age and necrosis stage at liver biopsy
- gender (male)
- duration of infection
- ALT levels ranging from 1.5–5 times the upper limit of normal (ULN), ALT > 70 IU/L and genetics (immune function and interferon sensitivity).

Conventional treatment

- Standard of care—pegylated interferon and ribavirin. Treatment with pegylated interferon and ribavirin leads to a sustained virological response (SVR) in 84% of hepatitis C patients with genotypes 2 and 3 (24 weeks) and 52% in genotype 1
The numbers treated with antiviral therapy in Australia through the highly specialised (S100) program in 2010 was 3760. Additional medications—protease inhibitors telaprevir and boceprevir. In development—interferon-free treatments.

Key treatment protocols

- From a naturopathic clinical perspective, the goal of supporting treatment of chronic hepatitis C is to reduce oxidative stress caused by the hepatitis C virus (proteins) and the inflammatory mediators produced by the ineffectual immune response to the virus and thereby reduce disease progression in the form of inflammation, fibrosis, cirrhosis and potentially cancer.
- Encourage beneficial dietary and lifestyle changes. (See the NAFLD section above and Chapter 3 on wellness.)
- Antiviral and immune support. An immediate, strong and persistent CD4+ T-cell response and a vigorous multispecific cytotoxic T lymphocyte response against multiple HCV epitopes coupled with a predominant T helper 1 cytokine profile is more likely to encourage viral clearance in response to acute HCV infection. Herbal medicines such as Astragalus membranaceus, Echinacea spp. and Phyllanthus amarus which influence the Th1–Th2 balance may assist in both acute and chronic hepatitis C infection. Zinc and vitamin E are particularly important for an effective immune response. Intravenous silibinin has shown direct anti-HCV activity in chronic hepatitis C patients who were previous non-responders to standard therapy and to prevent HCV re-infection after liver transplantation.
- The treatment strategies to reduce hepatic inflammation and oxidative stress, support liver function and digestive function and alleviate depression and fatigue are outlined in the NAFLD treatment protocol section.
- Use of specific nutraceuticals. Studies have shown that 2 g L-carnitine taken concurrently with interferon and ribavirin for 12 months helped chronic hepatitis C patients clear the hepatitis C virus and reduced fatty liver and fibrosis by 70%. The sustained virological response was also greater in the L-carnitine group (46%) compared with the interferon and ribavirin group (39%). A total 800 IU vitamin D3 per day given at the same time as pegylated interferon and ribavirin helped liver transplant patients with chronic hepatitis C achieve greater rates of SVR. Between 50% and 73% of chronic hepatitis C patients were deficient in vitamin D. Correcting vitamin D deficiency before antiviral therapy is recommended as low vitamin D is linked to severe liver fibrosis and low levels of SVR on interferon-based therapy.

Cholecystitis

Cholelithiasis is the medical term for the presence of gallstones in the gallbladder. An estimated 14–20% of Australians will develop gallstones in their lifetime. There are three main types of gallstones: cholesterol stones—70% cholesterol crystals; black pigment stones—calcium bilirubinate present in haemolytic disorders; and brown pigment stones—linked to bacterial or helminthic infection in the biliary tree.

In respect to aetiology and pathophysiology, hypersecretion of cholesterol and the hyposecretion of bile acids and phosphatidylcholine (lecithin) causes the bile to contain more cholesterol than the bile salts and phospholipids can solubilise. Chemical components of bile precipitate in the gallbladder and occasionally in the bile duct to form microscopic cholesterol-rich vesicles. Pathogenic development of these
cholesterol-rich vesicles into macroscopic gallstones has been linked to hypomotility and excess biliary mucin excretion,154 which is linked to hepatic cholesterol hypersecretion and a cycle of lithogenesis. Gallstones are asymptomatic in 60–80% of cases and, of those, only 10–20% will develop symptoms. Gallstone-associated pain can increase the risk of complications such as acute cholecystitis, cholangitis and pancreatitis.

Cholecystitis can be classified as acute or chronic. Acute cholecystitis is indicated if the pain lasts longer than 12 hours, and may be due to gallstone impaction in the cystic duct. The clinical presentations include fever, upper abdominal pain with marked tenderness and guarding in the right upper quadrant, especially with pain on palpation combined with inspiration, known as Murphy’s sign due to elevated pressure within the gallbladder due to obstruction.155 Chronic cholecystitis (or cholelithiasis) is the most common clinical presentation of symptomatic gallstones and presents as episodic biliary pain usually in the right upper abdominal quadrant or epigastric area, which can radiate to the right scapular area, midback or right shoulder. Episodes of biliary pain generally last between 30 minutes and a few hours and episodes may occur daily or every few months. Nausea is common, but vomiting and fevers are not.

Risk factors

- **Age**—increased biliary cholesterol secretion due to a decrease in cholesterol 7-\(\alpha\)-hydroxylase activity157 and decreased biliary salt excretion158
- **Obesity**—increased biliary secretion of bile from the liver with cholesterol supersaturation156
- **Females**—in pregnancy, endogenous oestrogens linked to increased hepatic cholesterol uptake and synthesis, gallbladder hypomotility and decreased cholesterol 7-\(\alpha\)-hydroxylase activity.151,155 The risk for women is two to three times that of males of the same age.155,159 Women with a BMI over 32 are six times more likely to develop gallstones than women with a BMI over 22160
- **Rapid weight loss and weight cycling and a prolonged fat-restricted diet** is thought to exacerbate gallbladder stasis
- **Diet**—high carbohydrates in the diet152 and high triglyceride levels in the blood153 are linked to gallstone formation
- **Dyspepsia**—particularly *Helicobacter* species and slow transit time

Conventional treatment161

- An ultrasound is the common diagnostic tool.
- A cholecintigraphy scan is also used.
- If acute cholecystitis is suspected, refer the patient to their general practitioner or a hospital emergency department.
- Current medical treatment for cholelithiasis is surgery. Single incision laparoscopic
cholecystectomy (SILC) is associated with a 90.7% success rate and a 6.1% complication rate.162,163

Key treatment protocols

- Encourage beneficial dietary and lifestyle changes. (See Chapter 3 on wellness.)
- Promote optimal bile formation in the liver with choleretics such as Curcuma longa,164 *Cynara scolymus* and *Peumus boldo*.
- Promote effective gallbladder motility and function with chologogues such as *Cynara scolymus*, *Peumus boldo* and *Taraxacum officinale*.
- As a specific for cholelithiasis use the cholerectic and chologogue *Peumus boldo*.
- Reduce bile and cholesterol reabsorption in the small intestine by reducing cholesterol intake, synthesis and output with niacin (B3),165 red yeast rice,166,167 *Cynara scolymus*,168 *Taraxacum officinale*,169 fibre and probiotics.
- Support optimal digestive function. See Chapters 4–6 on the gastrointestinal system.

* There is limited evidence of the role of herbal medicines in the treatment of cholecystitis170 and cholelithiasis.

Pancreatitis

Pancreatitis is a progressive inflammatory disease characterised by irreversible destruction of exocrine pancreatic tissue.171 Repeated episodes of acute pancreatitis lead to tissue remodelling and fibrosis.171 Pancreatitis can be due to obstruction of the pancreatic duct. Obstruction leads to an overproduction of ROS in pancreatic acinar cells, affecting the mitochondria and inducing apoptosis and necrosis.172,173 Alcohol is the most common cause of pancreatitis. Excessive alcohol consumption may cause the deposition of protein plugs in the pancreatic ducts, leading to obstruction. The presence of gallstones account for 25–40% of cases of pancreatitis; gallstone impaction at the ampulla of Vater causes hypertension in the pancreatic duct, initiating inflammation.174

Autoimmune pancreatitis is a chronic fibroinflammatory disease of the pancreas. There are two main subtypes: Autoimmune type 1 is a multi-organ disease associated with immunoglobulin G4 (IgG4) and may include proximal bile duct strictures, retroperitoneal fibrosis, renal and salivary gland lesions and swelling of the pancreas. Autoimmune type 2 is a pancreas-specific disorder without systemic involvement.175

Pancreatitis usually presents with abdominal pain consistent with acute pancreatitis (acute onset of a persistent, severe, epigastric pain often radiating to the back). Serum lipase or amylase activity elevated more than three times upper limit of normal (ULN) is a common finding. Characteristic findings of acute pancreatitis are revealed on contrast-enhanced computed tomography and magnetic resonance imaging or transabdominal ultrasonography.176 The most common clinical presentation of chronic pancreatitis is midupper abdominal postprandial pain that radiates to the back that is relieved by sitting upright or leaning forwards.177 Steatorrhoea, malabsorption, vitamin deficiencies (A, D, E, K, B12), diabetes, weight loss or obstructive jaundice may be present.177,178

Risk factors

- Excessive alcohol consumption—leads to endoplasmic reticulum stress and abnormal unfolded protein responses in pancreas, up-regulation of autophagy and ROS179
- Cholelithiasis
- Abdominal trauma
• Hyperlipidaemia
• Viral infections
• Medications (azathioprine, thiazides and oestrogens)
• Obesity and smoking increase the risk of progression to severe pancreatitis
• Genetics—patients with mutations in genes linked to cationic and anionic trypsinogen, serine protease inhibitor Kazal 1, cystic fibrosis transmembrane conductance regulator, chymotrypsinogen C and calcium-sensing receptor have been shown to be at increased risk of pancreatitis
• Environmental (petrochemical fumes)
• Untreated acute pancreatitis
• Possible autoimmune factor
• HIV/AIDS (comorbid factors and HAART)

Conventional treatment
• Autoimmune pancreatitis: corticosteroids
• Strong opioids for acute pain
• Removal of gallstones
• Antimicrobials—broad-spectrum antibiotics
• No effective treatment for chronic pancreatitis pain
• Acute: restoration of blood volume and electrolyte balance, replace fluids and minimise pancreatic ischaemia
• Enteral feeding to support/avoid malnutrition and development of chronic pancreatitis
• If pancreatitis with hypertriglyceridaemia: weight loss, exercise, blood sugar control, lipid-restriction diet

Key treatment protocols
• Encourage beneficial dietary and lifestyle changes. Cease alcohol and tobacco use. Eat low-fat and small meals. (See Chapter 3 on wellness.)
• Reduce oxidative stress and pain. Daily antioxidant supplementation of 600 mcg selenium, 0.54 g ascorbic acid, 9000 IU beta-carotene, 270 IU alpha-tocopherol and 2 g methionine was effective in the reduction of pain and oxidative stress of chronic pancreatitis.
• Reduce inflammation. In experimental pancreatitis (rat model) curcumin reduced inflammation via inhibition of NF-kappa-B and activator protein-1, and Taraxacum officinale reduced IL-6 and TNF-alpha levels in acute pancreatitis. A TCM formulation targeting pancreatitis contained: Bupleurum falcatum (anti-inflammatory), Glycyrrhiza glabra (anti-inflammatory and secretin-stimulating), Panax ginseng (tonic and free radical scavenging antioxidant) and Paeonia lactiflora (proton-pump inhibition). This herbal combination improved pancreatic ischaemia.
Table 7.2
Review of the major evidence for liver disease

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Mechanisms of action</th>
<th>Literature</th>
<th>Summary of results</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realsil: Silybin 94 mg, phosphatidylcholine 194 mg and α-tocopherol 30 mg</td>
<td>Inhibits and scavenges free radicals; protects lipid membranes; regulates cell signalling pathways involved in obesity and insulin resistance; reduces cell migration, TGF-beta-induced synthesis of procollagen type I and secretion of MMP-2. Phosphatidylcholine protects against oxidative stress-mediated liver damage</td>
<td>Loguerico et al. 2012(^{185})</td>
<td>Significant normalisation of ALT, AST and GGT over 12 months. Blood glucose was 31% lower in the treated group compared with placebo.</td>
<td>Realsil significantly reduced liver inflammation and improved dysglycaemia in NAFLD patients without increases in body weight.</td>
</tr>
<tr>
<td>Silybum marianum (active isolate: silibinin)</td>
<td>Antiviral, antioxidant, anti-inflammatory, hepatoprotective and antifibrotic effects</td>
<td>Fried et al. 2012(^{186}) Guedj et al. 2012(^{187}) Kim et al. 2012(^{188}) Polyak et al. 2010(^{189})</td>
<td>A range of studies have revealed activities that may be beneficial in liver dysfunction and disease including reduced inflammatory cytokines activity: IL-4, IL-10, TNF-α, IFN-γ, VEGF-A, TGF-β and NF-κB activity. Silibinin has prevented viral infection. Silibinin inhibited TGF-β induced de novo synthesis of pro-collagen I.</td>
<td>Intravenous use of silibinin is promising as an antiviral in HCV(^{195}).</td>
</tr>
<tr>
<td>Scutellaria baicalensis (active isolate: baicalin)</td>
<td>Baicalin ameliorates ischaemia/reperfusion-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in ALD(^{61})</td>
<td>Guo et al. 2009(^{60}) Kim et al. 2012(^{61})</td>
<td>Results have found baicalin reduces dyslipidaemia, hepatic lipid accumulation and visceral fat mass in vivo. Improves hepatic steatosis(^ {60}). Reduced serum ALT, TNF-α and IL-6 in alcoholic fatty liver.</td>
<td>The antioxidant and anti-inflammatory actions of baicalin and Scutellaria baicalensis make it a very useful clinical tool in NAFLD(^{60}) and ALD(^{61}).</td>
</tr>
<tr>
<td>Curcuma longa</td>
<td>Shown in a range of studies to have antioxidant, anti-inflammatory and anti-fibrotic actions</td>
<td>Ak et al. 2008(^{190}) Honda et al. 2006(^{46})</td>
<td>Antioxidant, radical scavenging and metal chelating effects in animal models. Prevented thioacetamide-induced cirrhosis, and hepatic fibrosis, inhibited hepatic stellate cell (HSC) activation. Suppressed connective tissue growth factor expression in HSC activation.</td>
<td>Curcuma longa reduces liver injury through down-regulation of inflammatory processes(^ {591}).</td>
</tr>
</tbody>
</table>
Table 7.2
Review of the major evidence for liver disease (continued)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Mechanisms of action</th>
<th>Literature</th>
<th>Summary of results</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynara scolymus</td>
<td>Shown in a range of studies to have antioxidant, anti-inflammatory, choleretic and hepatoprotective actions, which may be of benefit for a range of liver conditions</td>
<td>Speroni et al. 2003<sup>75</sup> Qiang et al. 2012<sup>168</sup></td>
<td>Normalisation of AST and ALT Reduction of histological changes and accumulation of triglycerides<sup>75</sup> Lowered hamster plasma cholesterol levels by a mechanism involving the greater excretion of fecal bile acids and neutral sterols after feeding for 42 days<sup>168</sup></td>
<td>Lowers cholesterol and triglyceride levels through stimulating bile production and flow</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Shown in a range of studies to have several beneficial actions for liver conditions including antiviral, anti-inflammatory and hepatoprotective effects</td>
<td>Hajaghamohammadi et al. 2012<sup>62</sup> Wu et al. 2008<sup>63</sup> Rhee et al. 2012<sup>64</sup> Wang et al. 2013<sup>192</sup></td>
<td>Lowered ALT and AST Prevented lipotoxicity and regulated apoptosis Reversed FFA-induced mitochondrial membrane depolarisation in HepG2 cells</td>
<td>Glycyrrhiza's anti-inflammatory and protective actions have significant benefits in treating NAFLD via altering gene expressions pathways seen in fibrosis and reducing hepatic inflammation</td>
</tr>
<tr>
<td>Schisandra chinensis</td>
<td>Shown in a range of studies to have antioxidant, hepatoprotective, antiobesity and antidiabetic actions, which may benefit several liver conditions</td>
<td>Pan et al. 2008<sup>76</sup> Park et al. 2012<sup>193</sup></td>
<td>Decreased hepatic total cholesterol and triglyceride levels (by up to 50% and 52%, respectively) in hypercholesterolaemic mice<sup>81</sup> Antiobesity action: reduced the accumulation of cellular triglycerides and induced inhibited differentiation and adipogenesis in 3T3-L1 cells in high-fat diet rats<sup>91</sup></td>
<td>Hepatoprotective, especially in terms of lipid metabolism</td>
</tr>
</tbody>
</table>
Table 7.2
Review of the major evidence for liver disease (continued)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Mechanisms of action</th>
<th>Literature</th>
<th>Summary of results</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>300–600 mg/day</td>
<td>Antioxidant—scavenger and up-regulation of endogenous antioxidants via Nrf2/ARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antifibrotic via inhibition of TGF-β and anti-inflammatory via inhibition of TNF-α induced NF-κB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-carnitine</td>
<td>Modulator of fatty acid transport and oxidation</td>
<td>Meta-analysis NAFLD Musso et al. 2010</td>
<td>Improves insulin sensitivity, modulates lipid profiles, glucose metabolism, oxidative stress and is anti-inflammatory and antifibrotic</td>
<td>Improves insulin sensitivity and promotes beta-oxidation</td>
</tr>
<tr>
<td></td>
<td>Improves beta-oxidation through protection and stimulation of mitochondrial function</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KEY POINTS

- There is a cyclic relationship between metabolic syndrome and liver disease.
- Oxidative stress and inflammation drives pathology in liver disease and pancreatitis. This reduces liver and pancreatic function with systemic consequences for health.
- Effective detoxification can regulate hormones and have anti-carcinogenic effects through inhibition of phase I and induction of phase II enzymes.95,87
- Conventional treatment for NAFLD, NASH, ALD and HCV are either lacking or can have unpleasant side effects, therefore an adjunct naturopathic protocol that can attenuate disease progression and side effects is an essential element of treatment.

FURTHER READING

Acknowledgments: Grateful acknowledgment goes to research assistants Rhoslyn Humphreys and Hannah Boyd. This chapter contains material authored by Jon Wardle, which was previously in the Endometriosis chapter in the first edition.

REFERENCES

